Congreso Bienal de la Real Sociedad Matemática Española Alicante, 19 - 23 enero 2026

Adaptive nearest neighbors for partial labels learning

Nicolás Errandonea¹, José Antonio Lozano^{1,2}, Santiago Mazuelas^{1,3}, Sanjoy Dasgupta⁴

¹Basque Center of Applied Mathematics (BCAM), ² University of the Basque Country (EHU), ³IKERBASQUE-Basque Foundation for Science, ⁴University of California San Diego (USCD)

nerrandonea@bcamath.org

Resumen. Partial labels learning (PLL) is a weakly supervised setting in which each instance is associated with a bag of labels rather than the true label, introducing ambiguity during training. Existing PLL methods are tailored to specific assumptions and fail in more general scenarios. While nearest-neighbor approaches do not assume restrictive assumptions, they require careful selection of the number of neighbors—a task that is particularly challenging in PLL. In this work, we propose a nearest-neighbor method for PLL that adaptively determines the optimal number of neighbors for each instance and is effective in general scenarios. We provide theoretical performance guarantees for our method under more general conditions than previous work. Experimental results demonstrate that our method performs comparably to kNN with the best choice of the number of neighbors and consistently outperforms state-of-the-art approaches in general PLL scenarios.

Palabras clave: aprendizaje con etiquetas parciales; garantías de rendimiento; vecinos más cercanos; etiquetas candidatas.

Referencias

- [1] E. Hüllermeier, J. Beringer (2006). Learning from ambiguously labeled examples.
- [2] T. Cour, B. Sapp, B. Taskar (2011). Learning from partial labels. *The Journal of Machine Learning Research*, 12, 1501–1536.
- [3] A. Balsubramani, S. Dasgupta, S. Moran, et al. (2019). An adaptive nearest neighbor rule for classification. *Advances in Neural Information Processing Systems*, 32.
- [4] J. Lv, B. Liu, L. Feng, N. Xu, M. Xu, B. An, G. Niu, X. Geng, M. Sugiyama (2023). On the robustness of average losses for partial-label learning. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 46(5), 2569–2583.

Indicar la preferencia (subrayar la opción elegida): póster o charla.

Indicar la preferencia (subrayar la opción elegida): Lunes/Martes o Jueves/Viernes.