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Resumen. Recent advances in Bayesian statistics have led to methodological innovations that
extend the scope of classical Bayesian inference. In particular, several alternatives and generalizations
of the standard Bayesian posterior have been introduced to address its limitations. These approaches
are commonly referred to under the broad term “generalized posteriors”.
In its most general form [1], a generalized posterior is the solution to the following variational
problem:

q∗ = argmin
q∈Q

{
Eq

[
n∑

i=1

ℓ(θ, xi)

]
+D(q∥π)

}
, (1)

where Q ⊆ P(Rd), {xi}ni=1 are observations in an Euclidean space X , ℓ : Rd × X → R+ is a loss
function, π ∈ P(Rd) is a prior, and D : P(Rd) × P(Rd) → R+ is a divergence measure. Observe
that choosing Q = P(Rd), ℓ(θ, x) = − log p(x|θ) for some likelihood p(x|θ), and D = DKL (the
Kullback-Leibler divergence) recovers the standard Bayesian posterior.
Beyond the most basic cases, theoretical analysis of generalized posteriors arising from (1) is still
lacking, especially when D ̸= DKL. In this work we study the finite-sample behavior of generalized
posteriors defined via f -divergences [2], a broad class of divergence measures widely used in statistics.
Our main technical contribution is to extend the stochastic differential equation (SDE) framework of
[3] beyond the standard Bayesian posterior. Using those tools, we obtain non-asymptotic posterior
contraction rates for f -divergence posteriors by bounding the moments of their associated SDEs.
Our results yield nearly optimal rates and clarify how different divergence choices affect posterior
concentration. Finally, we illustrate the general framework with concrete examples.
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