

On the Halfspace Theorem in the Euclidean Space With Density

ANTONIO JESÚS ORTEGA RAVELO

Departamento de Geometría y Topología, Universidad de Granada

aortegar@ugr.es

Resumen. The classical *Strong Halfspace Theorem* of Hoffman and Meeks [1] states that a non-flat, properly immersed minimal surface in \mathbb{R}^3 cannot be contained within a half-space. This work explores the extension of this theorem to Euclidean space \mathbb{R}^3 endowed with a density $f = e^\phi$. In this setting, minimal surfaces are replaced by *weighted minimal hypersurfaces*, characterized by the equation

$$H + \langle \nabla \phi, N \rangle = 0,$$

where H is the Euclidean mean curvature with respect to a unit normal N . The existence of a half-space theorem in this context depends crucially on the geometric and analytic properties of the density f . Here we will gather previous related results and seek new conditions ensuring that the theorem holds in this setting.

Palabras clave: half-space theorem; maximum principle; manifolds with density; geometric analysis; minimal surfaces.

References

[1] D. Hoffman, W. H. Meeks III (1990). The strong halfspace theorem for minimal surfaces. *Invent. Math.*, 101, 373–377.

Agradecimientos. Work in progress under the supervision of César Rosales. This research has been supported by the project PID2023-151060NB-I00, funded by MCIU/AEI/10.13039/501100011033 and the European Social Fund Plus (FSE+).

Indicar la preferencia (subrayar la opción elegida): póster o charla.

Indicar la preferencia (subrayar la opción elegida): Lunes/Martes o Jueves/Viernes.